English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  3-Center-3-Electron σ-Adduct Enables Silyl Radical Transfer below the Minimum Barrier for Silyl Radical Formation

Qiu, Z., Bruzzese, P. C., Wang, Z., Deng, H., Leutzsch, M., Farès, C., et al. (2025). 3-Center-3-Electron σ-Adduct Enables Silyl Radical Transfer below the Minimum Barrier for Silyl Radical Formation. Journal of the American Chemical Society, 147(14), 12024-12039. doi:10.1021/jacs.4c18445.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Qiu, Zihang1, Author           
Bruzzese, Paolo Cleto2, Author
Wang, Zikuan3, Author           
Deng, Hao1, Author           
Leutzsch, Markus4, Author           
Farès, Christophe4, Author           
Chabbra, Sonia2, Author
Neese, Frank5, Author           
Schnegg, Alexander2, Author
Neumann, Constanze N.1, Author           
Affiliations:
1Research Group Neumann, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_3316369              
2Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany, ou_persistent22              
3Research Group Manganas, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541709              
4Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445623              
5Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Content

show
hide
Free keywords: -
 Abstract: Transition-metal-catalyzed cleavage of the Si–H bond in silanes to yield silyl radicals requires substantial amounts of energy, which are commonly supplied by photons. For Rh(II) porphyrins, efficient hydrosilylation catalysis becomes accessible only upon site isolation in a metal–organic framework (MOF), and the formation of free silyl radicals likewise requires irradiation. Within the MOF, however, an uncommonly facile direct silyl radical transfer to olefin substrates is also possible, which makes thermal olefin hydrosilylation accessible at room temperature. The ability of MOF-supported Rh(II) metalloradicals to furnish an unprecedented 3-center-3-electron (3c-3e) Rh(II)-silane σ-adduct enables the assembly of a tricomponent transition state that is comprised of Rh(II), silane, and ethylene. The tricomponent transition state bypasses the high-energy silyl radical species and enables silyl radical transfer with an activation free energy ∼15 kcal·mol–1 below the minimum energy barrier for silyl radical formation. We report direct observation of the 3c-3e silane σ-adduct, which is a stable species in the absence of light and olefins. Furthermore, a combination of experiments and quantum chemical calculations shows that direct silyl radical transfer to ethylene is promoted by the temporary oxidation of the transition structure by a proximal Rh(II) center. Thus, the crucial role of the MOF matrix is to fix the inter-Rh separation in our catalyst at a value large enough for 3c-3e silane adduct formation but short enough for facile electron transfer.

Details

show
hide
Language(s): eng - English
 Dates: 2024-12-262025-03-282025-04-09
 Publication Status: Issued
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/jacs.4c18445
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of the American Chemical Society
  Other : JACS
  Abbreviation : J. Am. Chem. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 147 (14) Sequence Number: - Start / End Page: 12024 - 12039 Identifier: ISSN: 0002-7863
CoNE: https://pure.mpg.de/cone/journals/resource/954925376870
OSZAR »