Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization

Kusampudi, N., & Diehl, M. (2023). Inverse design of dual-phase steel microstructures using generative machine learning model and Bayesian optimization. International Journal of Plasticity, 171: 103776. doi:10.1016/j.ijplas.2023.103776.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kusampudi, Navyanth1, Autor           
Diehl, Martin2, 3, Autor           
Affiliations:
1Integrated Computational Materials Engineering, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3069168              
2Department of Computer Science, KU Leuven, Celestijnenlaan 200 A, 3001 Leuven, Belgium, ou_persistent22              
3Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium; Department of Computer Science, KU Leuven, Celestijnenlaan 200 A, Leuven 3001, Belgium, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computational geometry; Inverse problems; Machine learning; Polycrystalline materials; Yield stress; Auto encoders; Bayesian optimization; Crystal plasticity; Descriptors; Dual-phases steels; Machine learning models; Random forests; Steel microstructure; Variational autoencoder; Voronoi tessellations; Microstructure
 Zusammenfassung: The design of optimal microstructures requires first, the identification of microstructural features that influence the material's properties and, then, a search for a combination of these features that give rise to desired properties. For microstructures with complex morphologies, where the number of features is large, deriving these structure–property relationships is a challenging task. To address this challenge, we propose a generative machine learning model that can automatically identify low-dimensional descriptors of microstructural features that can be used to establish structure–property relationships. Based on this model, we present an integrated, data-driven framework for microstructure characterization, reconstruction, and design that is applicable to heterogeneous materials with polycrystalline microstructures. The proposed method is evaluated on a case study of designing dual-phase steel microstructures created with the multi-level Voronoi tessellation method. To this end, we train a variational autoencoder to identify the descriptors from these synthetic dual-phase steel microstructures. Subsequently, we employ Bayesian optimization to search for the optimal combination of the descriptors and generate microstructures with specific yield stress and low susceptibility for damage initiation. The presented results show how microstructure descriptors, determined by the variational autoencoder model, act as design variables for an optimization algorithm that identifies microstructures with desired properties. © 2023 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.ijplas.2023.103776
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Plasticity
  Kurztitel : Int. J. Plast.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Pergamon
Seiten: - Band / Heft: 171 Artikelnummer: 103776 Start- / Endseite: - Identifikator: ISSN: 0749-6419
CoNE: https://pure.mpg.de/cone/journals/resource/954925544230
OSZAR »