Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory

Hauge, E., Kristiansen, H. E., Konecny, L., Kadek, M., Repisky, M., & Pedersen, T. B. (2023). Cost-Efficient High-Resolution Linear Absorption Spectra through Extrapolating the Dipole Moment from Real-Time Time-Dependent Electronic-Structure Theory. Journal of Chemical Theory and Computation, 19(21), 7764-7775. doi:10.1021/acs.jctc.3c00727.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
ct3c00727_si_001.pdf (Ergänzendes Material), 2MB
Name:
ct3c00727_si_001.pdf
Beschreibung:
Supporting Information: Molecular geometries and HOMO energies for all systems. Comparisons between the spectra of filtered versus unfiltered dipole moments. Spectra of the fitted functions of the dipole moments compared with the corresponding reference spectrum
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
hauge-et-al-2023-cost-efficient-high-resolution-linear-absorption-spectra-through-extrapolating-the-dipole-moment-from.pdf (Verlagsversion), 3MB
Name:
hauge-et-al-2023-cost-efficient-high-resolution-linear-absorption-spectra-through-extrapolating-the-dipole-moment-from.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2023
Copyright Info:
© The Authors. Published by American Chemical Society.

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Hauge, E.1, 2, Autor
Kristiansen, H. E.1, Autor
Konecny, L.3, 4, 5, Autor           
Kadek, M.3, 6, Autor
Repisky, M.3, 7, Autor
Pedersen, T. B.1, Autor
Affiliations:
1Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, ou_persistent22              
2Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, ou_persistent22              
3Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University of Norway, ou_persistent22              
4Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
5Center for Free-Electron Laser Science, ou_persistent22              
6Department of Physics, Northeastern University, ou_persistent22              
7Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a novel function fitting method for approximating the propagation of the time-dependent electric dipole moment from real-time electronic structure calculations. Real-time calculations of the electronic absorption spectrum require discrete Fourier transforms of the electric dipole moment. The spectral resolution is determined by the total propagation time, i.e., the trajectory length of the dipole moment, causing a high computational cost. Our developed method uses function fitting on shorter trajectories of the dipole moment, achieving arbitrary spectral resolution through extrapolation. Numerical testing shows that the fitting method can reproduce high-resolution spectra by using short dipole trajectories. The method converges with as little as 100 a.u. dipole trajectories for some systems, though the difficulty converging increases with the spectral density. We also introduce an error estimate of the fit, reliably assessing its convergence and hence the quality of the approximated spectrum.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2023-10-022023-06-302023-10-032023-10-242023-11-14
 Publikationsstatus: Erschienen
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2307.01511
DOI: 10.1021/acs.jctc.3c00727
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 945478
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : This work was supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262695, and its Mobility Grant scheme (project nos. 301864 and 314814). The simulations were performed on resources provided by Sigma2─the National Infrastructure for High Performance Computing and Data Storage in Norway, Grant No. NN4654K. T.B.P. acknowledges the support of the Centre for Advanced Study in Oslo, Norway, which funded and hosted the CAS research project Attosecond Quantum Dynamics Beyond the Born–Oppenheimer Approximation during the academic year 2021–2022. In addition, this project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 945478 (SASPRO2) and the Slovak Research and Development Agency (Grant No. APVV-21-0497).
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
  Andere : JCTC
  Kurztitel : J. Chem. Theory Comput.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 19 (21) Artikelnummer: - Start- / Endseite: 7764 - 7775 Identifikator: ISSN: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832
OSZAR »