hide
Free keywords:
-
Abstract:
In materials science, artificial-intelligence tools are driving a paradigm shift towards big data-centric research. Large computational databases with millions of entries and high-resolution experiments such as electron microscopy contain large and growing amount of information. To leverage this under-utilized - yet very valuable - data, automatic analytical methods need to be developed. The classification of the crystal structure of a material is essential for its characterization. The available data is structurally diverse but often defective and incomplete. A suitable method should therefore be robust with respect to sources of inaccuracy, while being able to treat multiple systems. Available methods do not fulfill both criteria at the same time. In this work, we introduce ARISE, a Bayesian-deep-learning based framework that can treat more than 100 structural classes in robust fashion, without any predefined threshold. The selection of structural classes, which can be easily extended on demand, encompasses a wide range of materials, in particular, not only bulk but also two- and one-dimensional systems. For the local study of large, polycrystalline samples, we extend ARISE by introducing so-called strided pattern matching. While being trained on ideal structures only, ARISE correctly characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled uncertainty estimates which are found to be correlated with crystalline order of metallic nanoparticles in electron-tomography experiments. Applying unsupervised learning to the internal neural-network representations reveals grain boundaries and (unapparent) structural regions sharing easily interpretable geometrical properties. This work enables the hitherto hindered analysis of noisy atomic structural data.