English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Role of hole confinement in the recombination properties of InGaN quantum structures

Anikeeva, M., Albrecht, M. R., Mahler, F., Tomm, J. W., Lymperakis, L., Chèze, C., et al. (2019). Role of hole confinement in the recombination properties of InGaN quantum structures. Scientific Reports, 9(1): 9047. doi:10.1038/s41598-019-45218-8.

Item is

Files

show Files
hide Files
:
s41598-019-45218-8.pdf (Publisher version), 2MB
Name:
s41598-019-45218-8.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Anikeeva, Mariia1, Author           
Albrecht, Martin R.2, Author           
Mahler, Felix3, Author           
Tomm, Jens Wolfgang3, Author           
Lymperakis, Liverios4, Author           
Chèze, Caroline5, Author           
Calarco, Raffaella6, Author           
Neugebauer, Jörg7, Author           
Schulz, Tobias8, Author           
Affiliations:
1Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, 12489 Berlin, Germany, ou_persistent22              
2Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, Berlin, Germany, ou_persistent22              
3Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany, ou_persistent22              
4Microstructure, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863344              
5Paul Drude Institute für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany, ou_persistent22              
6Paul-Drude-Institute of Solid-State Electronics, Berlin, Germany, ou_persistent22              
7Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
8Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, 12489 Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: article; density functional theory; high resolution transmission electron microscopy; photoluminescence; polarization; temperature dependence; thickness
 Abstract: We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions. © 2019, The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2019-05-212019-06-212019-12-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/s41598-019-45218-8
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : European Union's Horizon 2020 research and innovation program (Marie Sklodowska-Curie Actions)
Grant ID : 642574
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Scientific Reports
  Abbreviation : Sci. Rep.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Publishing Group
Pages: 10 Volume / Issue: 9 (1) Sequence Number: 9047 Start / End Page: - Identifier: ISSN: 2045-2322
CoNE: https://pure.mpg.de/cone/journals/resource/2045-2322
OSZAR »