ausblenden:
Schlagwörter:
-
Zusammenfassung:
Space Infrared Telescope for Cosmology and Astrophysics (SPICA), the cryogenic infrared space telescope recently pre-selected for a ‘Phase A’
concept study as one of the three remaining candidates for European Space Agency (ESA’s) fifth medium class (M5) mission, is foreseen to
include a far-infrared polarimetric imager [SPICA-POL, now called B-fields with BOlometers and Polarizers (B-BOP)], which would offer a
unique opportunity to resolve major issues in our understanding of the nearby, cold magnetised Universe. This paper presents an overview
of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both
our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100–350 μm images of linearly polarised
dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those
achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 μm images will also have a factor ∼30 higher resolution than Planck polarisation data. This will make B-BOP a unique tool for characterising the statistical properties of the magnetised
ISM and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth
to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing Galactic
dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular
clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.